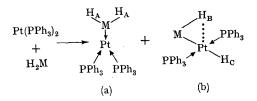
The Co-ordination of Small Molecules by Bistriphenylphosphineplatinum(0): The Reaction with H_2S , H_2Se , and H_2Te

By (the late) D. MORELLI,^a A. SEGRE,^b R. UGO,^c* G. LA MONICA,^c S. CENINI,^c F. CONTI,^a and F. BONATI^c


(* Istituto di Ricerche "G. Donegani", Montecatini-Edison S.p.A., Milan; ^b Istituto di Chimica Industriale del Politecnico, Centro Nazionale di Chimica delle Macromolecole del C.N.R., Sez. I, Milan; ^c Istituto di Chimica Generale, C.N.R. Laboratory, Milan, Italy)

BISTRIPHENYLPHOSPHINEPLATINUM(0), recently characterised in this laboratory,¹ can be roughly compared to an active centre on the surface of a heterogeneous platinum catalyst.² Molecules such as H_2S , H_2Se , and H_2Te poison platinum surfaces, so it was thought of interest to study the coordination of these molecules with $Pt(PPh_3)_2$ in order to find a model for the poison mechanism.

Hydrogen sulphide co-ordinates on to iridium³ and manganese⁴ complexes. When H_2S and H_2Se were bubbled into degassed benzene solution of $Pt(PPh_3)_2$ or $Pt(PPh_3)_3$, the colour changed after some minutes and white-cream stable compounds were recovered by evaporation of the solvent. These compounds of formula Pt(PPh₃)₂MH₂ (M = S, Se) are stable in air and very soluble in organic solvents in which they are monomeric, $Pt(PPh_3)_2SH_2$ [$M_{obs}(CHCl_3) = 696$, $M_{calc} = 753$] and $Pt(PPh_3)_2SeH_2$ [Mobs (CHCl₃) = 740, M_{calc} = 798]. In Nujol mull, these compounds show strong i.r. absorption bands v(Pt-H) at 2116 cm.⁻¹ (M = S) and at 2140 cm.⁻¹ (M = Se). In polar solvents, like ethanol, they slowly lose H₂S or H₂Se or H₂ at room temperature but in other solvents, heat is required.

With H_2 Te the reaction rate, at room temperature, seems to be very slow; by evaporating the solvent, a pale yellow compound, which does not show any v(Pt-H) stretchings, was obtained.

The n.m.r. spectra of H_2S and H_2Se compounds in saturated CDCl₃ or CH_2Cl_2 solution were run on a 100 Mc./sec. Varian Spectrometer at different temperatures (Table 1 and 2). Both compounds have very similar spectra, each with three principal absorptions. The low-field peak can be assigned to the proton H_A of the structure (a). It lies at a lower field than the peaks of pure H_2M (τ 9.218, M = S in CDCl₃; τ 11.610, M = Se in C₆D₆ R.T.) and shows a linear variation with temperature, typical of intermolecular hydrogen bonds.⁵

The high-field peaks can be attributed to the H_B and H_c of the structure (b). The H_c peak is about at the same position for both M = S or Se and slightly changes with the temperature. The chemical shift of H_B does not vary with temperature and depends on the nature of M. Its value seems to indicate that H_B is not a σ -bonded hydridic hydrogen.

Besides, the coupling constant $J(^{195}\text{Pt}-\text{H}_{c})$ has a normal high value typical for σ -hydrido-compounds,⁶ while the coupling constant $J(^{195}\text{Pt}-\text{H})$

TABLE 1

N.m.r. spectra of $Pt(PPh_3)_2SeH_2$ at different temperatures (chemical shifts are in τ values)

	Solvent CDCl ₃	Absorptions ^a		
${ m Temperature} + 50^{\circ}$		H₄ 8·367	H _B 14·229	Hc 18-828
+27	$CDCl_{3}$	8.400	14.221	18.807
0	CDCl ₃		$14 \cdot 212$	18.732
30	CDCl ₃		$14 \cdot 185$	18.673
-20	CH ₂ Cl ₂		14.372	18.668
-40	CH_2Cl_2		14.377	18.633
-60	CH ₂ Cl ₂		$14 \cdot 365$	18.580
-90	CH_2Cl_2		14.337	18.487

^a All spectra show absorptions due to phenyl rings of phosphines at nearly τ 3; intensities of protons B and C are in ratio 1:1; absorptions due to protons B and C are doublet $[J(H_B-H_C) = 2.9 \text{ c./sec.}]$ and show satellites due to 1⁹⁵Pt-H coupling. $[J(Pt-H_B) = 44.6 \text{ c./sec.}; J(Pt-H_C) = 992.9 \text{ c./sec}]$. These absorptions broaden by lowering temperature, absorptions due to proton A are always rather broad.

TABLE 2

N.m.r. spectra of $Pt(PPh_3)_2SH_2$ at different temperatures (chemical shifts are in τ values)

		Absorptions ^b		
Temperature	Solvent	H_{\blacktriangle}	$\mathbf{\hat{H}}_{\mathbf{B}}$	Hc
$+40^{\circ}$	CDCl ₃	8.249	11.445	$19 \cdot 220$
+20	$CDCl_3$	8.057	11.438	19.187
0	CDCl ₃	7.895	11.433	19.140
-20	CDCl ₃	7.652	11.446	19.110
-40	$CDCl_{3}$	7.325	11.451	19.052
+27	CH2CI2	8.092	11.641	19.195
-40	CH ₂ Cl ₂	7.336	11.590	19.057
-60	CH ₂ Cl ₂		11.569	19.032
-80	CH_2Cl_2		11.567	18.995

^b All spectra show absorptions due to phenyl rings of phosphines at nearly τ 3; intensities of protons B and C are in ratio 1:1; absorptions due to protons B and C are singlet (half an amplitude about 2 c./sec., so, if present, J_{AB} must be less than 2 c./sec.) and show satellites due to ¹⁹⁶Pt-H coupling [$J(Pt-H_B) = 43.8$ c./sec.; $J(Pt-H_C) = 932$ c./sec.]. These absorptions broaden by lowering the temperature and at -80° they split into triplets due to ³¹P-H coupling [$J(P-H_B) = 10$ c./sec., $J(P-H_C) = 11$ c./sec.].

is unusually low showing that platinum to hydrogen interaction is of a different type. Possibly H_c is bonded through a platinum orbital with a normal *s* character, while H_B interacts weakly with the d_{z^2} orbital of platinum.

However, the coupling ¹⁹⁵Pt-H_B could be transmitted through the S or Se atoms,7 though structure (a) does not show any such coupling. Strangely enough there is no observable coupling of H_B and H_C with ³¹P at room temperature; the coupling, which appears at lower temperature, shows the presence of two trans-phosphorous atoms and cannot be easily explained. In fact this behaviour is not due to a rapid exchange between H_B and H_c . By adding D_2O , the H_B peak disappears suddenly, the H_A peak after a few minutes, but that of H_c only after 24 hours. In order to explain this effect we have investigated the yellow compound obtained by interaction of $Pt(PPh_3)_2$ with PhSH [$\nu(Pt-H)$ 2130 cm.⁻¹ in Nujol, M_{obs} (in CHCl₃) = 610, $M_{calc} = 892$]; at 25° it shows two n.m.r. peaks (CDCl₃), one weak at τ 6.65 (singlet) and the other one at τ 19.926 (singlet), $J_{\rm Pt-H} = 960$ c./sec. This spectrum and the low molecular weight can be explained by the equilibrium:

$$Pt(PPh_3)_2 + PhSH \longrightarrow PhS Pt Ph_3 Ph_3P Pt H$$

In CH₂Cl₂ solution, at -60° the τ 19.926 peak splits into a triplet [J(P-H) = 12 c./sec.]. The behaviour shows again that a rapid exchange hypothesis for structure (b) is not acceptable.

On the other side it is clear, from the exchange with D_2O that structures (a) and (b) do not interconvert quickly at room temperature. Though the mechanism of interchange of structures (a) and (b) is not yet clear and needs a more detailed investigation in solution, which is in progress; it is clear that possibly the mechanism of poisoning of platinum surface goes via hydrogen abstraction of H₂M species bonded to the surface. Preliminary

studies show a similar behaviour with palladium(0), nickel(0), and rhodium(1) phosphine compounds.

(Received, April 10th, 1967, Com. 335.)

¹ R. Ugo, F. Cariati, and G. La Monica, Chem. Comm., 1966, 868.

² D. Morelli, R. Ugo, F. Conti, G. La Monica, S. Cenini, and F. Bonati, J. Inorg. Nuclear Letters, 1967, to be submitted.

³ L. Vaska, Science, 1966, 140, 769, and references therein; L. Vaska and D. L. Catone, J. Amer. Chem. Soc., 1966, 88, 5324.

W. Strohmeier and J. F. Guttenberger, *Chem. Ber.*, 1964, 97, 1871.
J. W. Emsley, J. Feeney, and L. H. Sutcliffe, "High Resolution N.m.r. Spectroscopy," Pergamon Press, Oxford, 1965, vol. 1, p. 544.
A. P. Ginsberg, "Transition Metal Chemistry," ed. Carlin, M. Dekker Inc., 1965, vol 1, p. 215.

⁷ P. L. Corio, *Chem. Rev.*, 1960, **60**, 363.